Learning Automatic Schedulers through Projective Reparameterization

Ajay Jain Saman Amarasinghe

I. Discrete search spaces

 \bullet \bullet

- I. Discrete search spaces
- 2. Large, combinatorial search spaces

- I. Discrete search spaces
- 2. Large, combinatorial search spaces
- 3. Highly constrained feasible sets

Challenging for supervised learning!

Motivating application: Instruction Scheduling

Motivating application: Instruction Scheduling

- List scheduling with heuristics
- Stochastic search & superoptimization
- Integer linear programming
- Reinforcement learning

Challenging for supervised learning!

Baseline: Sinkhorn iteration from ranking literature \rightarrow 16% of schedules are invalid

This work

- Introduce EPOCS operator
 - General approach for learning under dynamic constraints
- Formulate instruction scheduling as relaxed integer program
- Imitate GCC compiler instruction schedules

Permutation matrix representation

Fixed constraints

$$\sum_{i=1}^{n} \mathbf{P}_{ij} = 1$$
$$\sum_{j=1}^{n} \mathbf{P}_{ij} = 1$$
$$\mathbf{P}_{ij} \in \{0, 1\} \quad \text{(relaxed: } \mathbf{P}_{ij} \ge 0\text{)}$$

ranking, scheduling, packet switching, matching... Input dependent partial order constraints

$$\left\{ \sum_{j=1}^{n} j\mathbf{P}_{jb} - \sum_{j=1}^{n} j\mathbf{P}_{ja} \ge 1 \text{ if } x_a \prec x_b \right\}$$

Algorithm 1: EPOCS provides a differentiable projective reparameterization of general dynamic constraints.

Correct the relaxation with matching (Hungarian algorithm)

 $M(\mathbf{\hat{P}}) = \max_{\mathbf{P}\in\mathcal{P}_n} \langle \mathbf{\hat{P}}, \mathbf{P} \rangle_H$

Evaluation

Train POCSNet to imitate GCC 4.9.4 schedules

77,202 basic blocks from SPEC2006, SPEC2017 [Mendis et al 2019]

Evaluate data dependency violations, accuracy Baseline: Sinkhorn iteration

Imposing dynamic constraints reduces data dependency violations

Accuracy of schedules

	Fixed constraints Sinkhorn iteration	Dynamic constraints EPOCS/POPOCS
Accuracy	35.6%	<u>39.7%</u>
Kendall tau distance	0.238	<u>0.222</u>

Imposing constraints improves accuracy (+4%)

POCSNet schedule latencies are on par with GCC latencies

Shuffled input block

Matched permutation matrix

POCSNet scheduled block

Takeaways

- EPOCS: General purpose op for dynamic constraints on NNs
- One application: Job scheduling problems
- A step toward correct-by-construction ML for Systems:

Enforce known constraints end-to-end for accuracy boost + guarantees

Contact: ajayj@berkeley.edu

Shuffled input block

Matched permutation matrix

POCSNet scheduled block